التوزيع المكاني للموجات الكهرومغناطيسية لأبراج شركات الاتصالات بالمنطقة المركزية للحرم المكي الشريف والمشاعر المقدسة

ـ. وليد السيد أبو السعود، د. تركي محمد حبيب الله، د. عصام عبدالحليم مرسي، د. عاطف محمد فتحي
معهد خادم الحرمين الشريفين لأبحاث الحج والعمرة - جامعة أم القرى

ملخص

أدى الانتشار الواسع لأبراج محطات تقوية شركات الاتصالات اللاسلكية وخاصة المتواجدة بوسط الأحياء السكنية وبالقرب من المدارس بصورة واضحة إلى زيادة حدة القلق لدى المواطنين والخوف من العواقب الصحية المحتملة من التعرض لمثل هذه المجالات الناجمة عن الإشعاع المتبئ لتلك الأبراج. لذا فقد تم التخطيط لهذه الدراسة بهدف تحديد أمكان الكثافة في توافدت الأبراج اللاسلكية بمحيط المنطقة المركزية للحرم المكي الشريف وتقدير مستويات شدة المجالات الكهرومغناطيسية الصادرة عنها بهدف تقييم الوضع الراهن لاتخاذ إجراءات لتقييد تلك المجالات في تردادات الطاقة التي يمكن أن يتعرض لها الإنسان في الأماكن العامة ومدى تأثير إغلاقها ببطيئة التضاريس بالمنطقة. ومن ثم مقارنة النتائج بالمعايير ومستويات اللوائح الدولية وعينة الإشعاعات وتقييم الموجات اللاسلكية وذلك بهدف صحة وسلامة الحجاج والمعترين والمقيمين بتلك البقاع الطاهرة. وقد أوضحت الدراسة مدى تأثير إشاعة تلك الموجات ببطيئة التضاريس بالمنطقة والكثافة السكانية المتواجدة بها وخاصة في المساحات الضيقة يسبياً كbands الأودية التي تشغله بعض الأحياء مما يؤدي إلى زيادة ملحوظة في مستوياتها ببعض الإحياء دون غيرها، إلا أن جميع القائم البارود الذي تم رصدها بمحيط المنطقة المركزية للحرم المكي الشريف لاتزيد عن الحد الأدنى المسموح به والوارد في توصيات اللجنة الدولية للوقاية من الإشعاعات غير المؤينة (ICNIRP) ووثيقة "الإرشادات النهائية لتعرض البشري للمجالات الكهرومغناطيسية للتعرضات الراادية" الصادرة عن هيئة الإسلام.

الكلمات الدالة: المجالات الكهرومغناطيسية، الأشعة الراادية، معدل الأمتصاص النوعي، التمثيل المكاني، نظم المعلومات الجغرافية.
المقدمة

نظراً لما تمثله مكة المكرمة من مكانة تهوي إليها افتداد المسلمين من كل بقاع الأرض ويعقد قيثتها الحجيج والمعتمرين من كل صوب وحبد لإتمام فرائض الإسلام، قامت شركات الاتصالات الإسلامية العاملة بمكة المكرمة بزيادة سعة قدراتها وإمكانياتها عن طريق نشر عدد كبير من مراكز التحقية الإسلامية لتغطية كافة أرجاء مكة ومناطق المشاعر المقدسة. ونتيجة لما قد تسببه تلك المواقف الكهرومغناطيسية الصادرة عن أراج شركات الاتصالات الإسلامية من أضرار صحية وبيئية على ساحة الإنسان وخاصة القاطنين بالمناطق المحيطة بتلك الأراج، والتي أكدته معظم التقارير الصادرة عن منظمة الصحة العالمية (WHO)، وأثبتته العديد من الدراسات العالمية من إحتمالية زيادة خطورة هذه المواقف وتفاقم المردود الصحى لها على ساحة الإنسان عند تجاوز مستوياتها للحدود الأمنة والتعوض لها لفترات زمنية طويلة. كانت من أهم الغليانات التي يهددها البيئة البحث هو تحدي أكاذيب الكثافة في تواجهات تلك الأراج الخاصة بتقنية الكهرومغناطيسية، وقوتها بمرور الزمن blanco. وحيث أنه من المتوقع أن يستمر زيادة استخدام الهاتف الجوال في المستقبل بإطلاق مع زروع الشبكات المستقبلية (الاتحاد الدولي للاتصالات 2013). ونظرًا لهذا التنحى الهائل والمتسارع في مجال تكنولوجيا الاتصالات الإسلامية ومحتوى البث الراديوي، أصبحت مسألة تفاعل الإنسان مع تلك الخلق الكهرومغناطيسية حيوية وشعبة ذاتية، ونتيجة لذلك كل الجدل في الأونة الأخيرة حول تأثير أراج الجوال على البيئة بصورة عامة وصحة الإنسان بصورة خاصة وما قد تسببه من أضرار، وخاصة عند ظهور إنتشار أراج الهاتف الجوال وسط الأحياء السكنية، وفق أسطول المباني بصورة تاين تقلق الكثير من المهتمين تجاه الخطر الصحي الذي قد ينطوي عليها وجود تلك الأراج.

فقد أوضحت الاتصالات وتقارير الصادرة عن وزارة الاتصالات وتقنية المعلومات السعودية أن عدد مستخدمي الهاتف الجوال يتزايد باطراد خصوصاً مع انتشار الجيل الثالث والرابع من التقنيات الإلكترونية الحديثة، ففي عام 2011 قدر عدد المشتركى الهاتف الجوال حوالي 26.5 مليون مشترك، ثم تزايد عدد المشتركى الهاتف الجوال إلى حوالي 36.15 مليون مشترك عام 2008. وتبناياً للتقارير الإحصائية الحديثة جاءت المملكة العربية السعودية في المرتبة الأولى عالمياً من حيث عدد مستخدمي الهاتف الجوال، فقد أظهرت الدراسة التي أجريت تحت مظلة مؤتمر الأمم المتحدة للتجارة والتنمية بأن السعودية تمثل عدداً من مستخدمي الهاتف الجوال أكثر من أي دولة في العالم، بحيث يصل عدد أجهزة الهاتف إلى 130 جهازًا مقابل كل 100 مواطن سعودي. وعلى الصعيد العربي احتلت السعودية المرتبة الأولى في مؤشر جدة المنافسة في قطاع الاتصالات الخليوية في العالم العربي الصادر عن مجموعة المستشارين العرب للعام 2012، وسجلت 74.56 بالمئة. وحسب التقارير الإحصائية الصادرة عن هيئة الاتصالات وتقنية المعلومات السعودية، فإن عدد المشتركين بالمملكة بخدمات الاتصالات المنقولة (الهاتف الجوال) ارتفع من 41,495,405 إلى 54,500,000 مليون مشترك خلال الفترة من 2010 وحتى نهاية التصفي الأول من العام 2013.
تم اختيار منطقة الدراسة لتشمل المنطقة المركزية للحرم المكي الشريف والواقعة بالمنطقة الجغرافية المحدة بين دائري عرض (٥٠.٣٨١، ٥٣.٣٠٣) شمالاً، وخطي طول (٤٥٤.٧٣، ٤٥٨.٥١٤) شرقاً، بعرض يبلغ نحو 8 كيلومترات، وبعمق يبلغ ٣٦ كيلومتر تقريباً لغطي المنطقة المركزية للحرم المكي الشريف. تميز المنطقة بخلاف تضاريسها وتعقيد سطحها، حيث تنتشر التلال والجبال بارتفاعات تتراوح ما بين ٣٠ إلى ٥٠ مترًا فوق سطح البحر، كما تعمل السلاسل الجبلية المتصلة بفصل العديد من الأحياء السكنية عن بعضها البعض بالإضافة إلى تنازل التلال والجبال المفردة في بعض الأحياء السكنية الأخرى.

الأهداف

يهدف البحث إلى تقييم الوضع الراهن لمستويات شدة المجالات الكهرومغناطيسية بالمنطقة المركزية للحرم المكي الشريف بمكة المكرمة حرصاً على سلامة ضيوف وأهل البيت الحرام، ويمكن تلخيص تلك الأهداف كالآتي:

- حصر البيانات الجغرافية لأبراج شركات الاتصالات بمحيط منطقة الدراسة.
- تحديد أماكن الكثافة في تواجد تلك الأبراج بكل كيلو متر مربع بأدواتها المختلفة وتنوعها موزدي الخدمة.
- رصد شدة المجالات الكهرومغناطيسية الصادرة عن تلك الأبراج وتردداتها الموجية بالأحياء المحيطة بساحات الحرم المكي الشريف، والمتوافقة بوسط الأحياء السكنية وبالقرب من المدارس بصورة واضحة.
- تقييم حضور الدولية المسموح بها للتعرض الأمن والخطر للكميات، وكذلك تقدير الآثار الصحية الناجمة عن التعرض للمجالات الرادوية ذات التردادات ما بين (٣) وحتى (٣٠) جيجاهرتز.
- مطابقة النتائج مع المعايير الدولية الصادرة من قبل اللجنة الدولية للحماية من الإشعاع غير المؤثر (ICNIRP) ووضيفة الردائح الوطنية للتعرض البشري للمجالات الكهرومغناطيسية للترددات الرادوية والتي تنظم الحدود القصوى المسموح بها للتعرض للمجالات الصادرة عن أبراج التلفزيون الخاصة بالهواتف الجوال.
- حساب معدلات امتصاص أنسجة الجسم للكميات الإشعاعية من خلال حساب معدل الامتصاص النوعي - وهو المعيار الذي تم وضعه لقياس ضرر الأشعة على جسم الإنسان، من خلال حساب كمية الطاقة التي تمتصها أعضاء الجسم المختلفة لكل وحدة كتلة وقياس باواط لكل كيلوجرام.

الطريقة المستخدمة والمنهجية

اعتمدت الدراسة على الرصد الميداني لمواقع أبراج الجوالات الرئيسية (Macrocells) وتحديد الإصدادات الخاصة بكل برج وتوقيتها على خرائط المنطقة المركزية للحرم المكي الشريف لإعداد قاعدة بيانات جغرافية لها باستخدام تطبيقات نظم المعلومات الجغرافية. حيث تمثل تلك النوعية من الأبراج عصب شبكات الهواتف الجوال حيث تصل قدرة البرج الواحد على تغطية وثب ترددات ذات طاقة عالية نسبة قد تصل إلى ٥٠٠ واط وبالمثل يصل نصف قطره إلى عدة كيلومترات تقريباً. لذا فإن انتشارها الأمن يجب أن
يكون في المناطق البعيدة وذات الكثافة السكانية القليلة، وهذا ما أوصت به جميع الدراسات والأبحاث التي نشرت في هذا المجال كذلك الإرشادات والمعايير الدولية والمحلية والتي أوصت مجتمعة بضرورة تواجد تلك النوعية من الأبراج خارج نطاق المدن السكنية، شكل (1 - أ).

كما تم رصد المواقع الخاصة بأبراج التغطية اللاسلكية الثانوية (Microcells) على إمتداد منطقة الدراسة (OpenSignal) بالاعتماد على برنامج خلوية لأبراج الهاتف الجوال الثانوية خاصة الموجودة بموقع يصعب الوصول إليها كأشكال البنية وأعلى سقف الجبال وذلك في محط دائرة يبلغ قطرها 1000 متر مرعب تقريباً وتوضيحها على خرائط. كما يمتاز البرنامج بتعامله مع كافة الأنظمة اللاسلكية والتي تدعمها خدمات GSM - CDMA بأشكال المحمول، شكل (1 - ب).

شكل (1): (أ) نموذج ثلاثي الأبعاد يوضح تغطية أبراج المحطات القاعدية "الماكرو" الأبراج الخاصة بمنظمة الإتصالات اللاسلكية على المستوى المحلي، (ب) يوضح نموذج ثلاثي الأبعاد يوضح تداخل تغطية الأبراج الثنائية "الماكرو" لسد الفراغات داخل مدى الأبراج القاعدية.

تمكن خلال الدراسة رصد مستويات شدة المجالات الكهرومغناطيسية الصادرة عن الأبراج ونقطة بنطاق المنطقة المركزية للحرم المكي الشريف في الفترة الممتدة من 4 رمضان وحتى 30 رمضان 1434 ه وذلك باستخدام جهاز قياس المجالات الكهرومغناطيسية (TES-593) المتخصصة في قراءة الإشعاعات عالية التردد كالإشعاعات الراديوية وجزء هيئة حماية البيئة الأمريكية EPA من موجات الميكرويف بالطيف الكهرومغناطيسي المحدودة في المدى الترددي ما بين (10) ميجاهرتز حتى (8) جيجاهرتز، بدرجة حساسية عالية جداً تصل لأقل من 0.0001 ميلى واط/متر². كما تم إجراء قياسات حقلية لمستويات شدة المجالات الكهرومغناطيسية الصادرة عن بعض تلك الأبراج والمتواجدة داخل المناطق السكنية والمبانى بالقرب من المنشآت التعليمية والمرافق الصحية بهدف تحديد الوضع البيئي للقاطنين بالقرب منها ومن ثم تحليل النتائج واستعراضها بشكل يتح مقارنتها بالقياسات والمعايير ومناقشة الاستنتاجات.
ورنظراً للطبيعة الجبلية والتضاريسية المعقدة لمنطقة
الدراسة، فقد تم تقسيم المنطقة إلى عدد من الوحدات
(14) وحدة تبلغ مساحة الوحدة 650 متر مربع تقريباً
شكل (2)، وذلك لضمان قياس مستويات شدة المجال
الكهرباءي وتغطية كافة المساحات الممكنة
ورصد وتوثيق القياسات بكافة الأحياء السكنية
والميادين العامة وساحات الحرم المكية الشريف.

شكل (2): صورة القمر الصناعي لمنطقة الدراسة
موضحاً عليها تقسيم المنطقة لشبكية من الوحدات
المساحية تقدر بأبعادها حوالي (۵۰) م 3 تقريباً.

مناقشة النتائج

تقييم مستويات شدة المجال الكهرومغناطيسية

تم رصد القيم الخاصة بمستويات كلاً من شدة المجال الكهربائي (E) بوحدة (الفولت/متر)، شدة المجال
المغناطيسية (H) بوحدة (مل أمبير/متر) و شدة كثافة القدرة (S) بوحدة (مل واط/متر ۲)، وعلى أفراد
زمنية متعاقبة بهدف تحديد فترات التغير (الذروة) في مستويات تلك المجالات الكهرومغناطيسية على مدار
اليوم. كما تحت معاينة النتائج وتحليلها للوصول إلى المستويات الحالية للطاقة الإشعاعية الصادرة عن أبراج
الجوالات. بغرض إنشاء خرائط كنترورية وثلاثية الأبعاد توضح اتجاهات تلك المستويات مع ربطها بمصادر
الإنبعاثات ومدى تأثرها بالطبيعة الطبوغرافية للمنطقة، ومقارنة تلك النتائج بالقيم المحلية والعالمية
المستوح بها للتعرض لمثل هذا النوع من الإشعاع.

Electric Field Strength (E)

قياسات شدة المجال الكهربائي (E) أمكن رصد القيم الخاصة بمستويات شدة المجال الكهربائي بوحدة (الفولت/متر) بمنطقة الدراسة على مدار ثلاث فترات زمنية خلال اليوم، كما روعي البند عن مواقع خطوط نقل الطاقة الكهربائية ومحيطات توزيع
الكهرباء ذات الجهد العالي عند أخذ القياسات، يوضح الجدول (1) القيم القصوى التي تم تسجيلها لمستويات
شبه المجال الكهربائية بالمنطقة، وقد تم تصنيفها تبعاً لأساس الأحياء التي سجلت بها تلك القيم حتى
يسهل الوصول إلى استنتاجات لأسباب ارتفاع المستويات تلك المناطق دون غيرها، وقد لوحظ بمقارنة قيم
المستويات لشبه المجال الكهربائي التي تم رصدها على فترات اليوم، زيادة معدلاتها بصورة ملحوظة أثناء
فترات النهار مقارنة بما تم تسجيله أثناء فترات ما بعد الظهر والفترات المسائية شكل (4)، مسجلة ارتفاعاً
في مستوياتها تترواح ما بين (۵۰) ۴.۲۵ ۴.۰۹ فولت/متر) بالأحياء المتاخمة لساحات الحرم المكية الشريف

السجل العلمي لعام ۱۴۳۷ هـ، الطلقلي العلمي في الأبحاث الحج والعمرة والزيارة ۲۴۴
في حين بلغت مستويات شدة المجال الكهرومغناطيسي للأخياء والمتاخمة لساحات الحرم المكي أثناء فترات المساء إلى معدلات منخفضة نسبياً مقارنة بقراءات الفترات الصباحية تراوح ما بين (2.985 - 3.284 فولت/متر) باستثناء على قيمتها تم رصدها أثناء فترات المساء بنطاق حي شعب عامر وشعب على (الساحة الشرقية للحرم المكي) والتي بلغت (8.10 فولت/متر). كما ارتفعت القيم الخاصة بالأخياء البعيدة نسبياً عن الحرم المكي لتسجل (7.206.4 - 9.248 فولت/متر) بأحياء الحلالية - المسافلة - العزيزية - العتيبية على التوالي. ومن خلال القراءات السابقة نستطيع أن نستند إلى زيادة السبب في زيادة مستويات شدة المجال الكهرومغناطيسي خلال فترات النهار بالمناطق القريبة لساحات الحرم المكي، فقد تزداد تلك الزيادة في هذه الأوقات إلى زيادة نشاط الأت وحالة المعدات المستخدمة في عمليات توسعة الحرم الشريف بهذه المناطق في تلك الأوقات من اليوم والتي قد تؤثر في زيادة مستويات هذا النوع من الحقول الكهرومغناطيسية.

وبمقارنة القيم المسجود للكم الدراسية الخاصة بالذين الأهداف، يظهر أن الفجوة بين القيم المتصلاً إتجاه الملاحظة أن جميع القيم الواردة أعلاه لتزيد عن الحد الأدنى المسموح به والواردة في توصيات اللجنة الدولية للوافرية من الإشعاعات غير المذكورة (ICNIRP) ووثيقة "الإرشادات الوطنية للتعرض البيئي للمجالات الكهرومغناطيسية للترددات الراديوية" والصادرة عن هيئة الإتصالات وتقنية المعلومات السعودية:

ألا أن نتائج القياسات التي تم رصدها بالمناطق القريبة جداً من الحرم المكي (ال أقل من 100 متار تقريباً) وخاصة بالساحة الغربية للحرم المكي الشريف والتي بلغت حوالي 4.59 فولت/متر، قد تكون مستوية من الحدود القصوى المسموح بها حسب المواصفات الإيطالية (1 فولت/متر) إلا أنها تقل كثيراً عن باقي المعايير الدولية وخاصة اللجنة الدولية للوافرية من الإشعاعات غير المذكورة (ICNIRP).

شكل (3): يوضح الخريطة الكهروتقنية لقيم القياسات الخاصة بمستويات شدة المجال الكهرومغناطيسي لكل من الحدود القصوى المسموح بها حسب المواصفات الإيطالية (1 فولت/متر) إلا أنها تقل كثيراً عن باقي المعايير الدولية وخاصة اللجنة الدولية للوافرية من الإشعاعات غير المذكورة (ICNIRP).
جدول (١٠): قيم القياسات القصوى والدنيا لشدة المجال الكهربائي (فولت/متر)، خلال فترات اليوم لموسم رمضان لسنة ٤٣٤ ه موزعة على الأحياء تبعًا لأعلى القياسات والتي سجلت بها.

مشكلة (٤٤): مقارنة بين قيم المتوسطات التي تم تسجيلها لشدة المجال الكهربائي (فولت/متر) بكافة المواقع خلال الفترات الصباحية والمسائية من اليوم، لموسم رمضان لسنة ٤٣٤ هـ.

قياسات شدة المجال المغناطيسي

أُوضحت النتائج الخاصة بمستويات شدة المجال المغناطيسي التي تم رصدها على فترات اليوم، زيادة معدلاتها خلال الفترات الصباحية بالمقارنة بما ت تسجيله أثناء فترات ما بعد الظهر والفترات المسائية شكل (١٦). مسجلة إرتفاعًا في مستوياتها يتراوح ما بين ٤.٦٠ إلى ٦.٧٠ (ملأ أمبر/متر) بالأحياء المتاخمة للسلاسل الحرم المكية الشريف (حي الهجرة، حي باب الباب والشامية، حي أبيض)، وفي شعب عامر وشعب على. في حين تنخفض مستوياتها نسبيًا بالأحياء البعيدة عن الحرم لتسجل (٥.٠٠ ملأ أمبر/متر).
بحب العزيزية أقصى الشرق، (0.44 ملي أمبير/متر) بحب الخالدية أقصى الجنوب الغربي، (0.47 ملي أمبير/متر) بحب العنبية بأقصى الشمال، شكل (10). في حين تصل مستويات شدة المجال المغناطيسي لتلك الأحياء والمناخية لساحات الحرم المكي أثناء فترات المساء إلى معدلات منخفضة نسبياً عن قراءات الفترات الصباحية تتراوح ما بين (0.74 ملي أمبير/متر) بإستثناء أعلى قيمة سجلها أثناء فترات المساء والمشتقة بحب شعب عامر وشبع على (الساحة الشرقية للحرم المكي) والتي بلغت (10.94 ملي أمبير/متر). كما ارتفعت القيم الخاصة بالأحياء البعيدة نسبياً عن الحرم المكي لتتسجل (0.28 ملي أمبير/متر) - (0.48 ملي أمبير/متر) بحفاد الخالدية - المسفلة - العنبية - العزيزية على التوالي. وبمقارنة القيم القصوى تلك لمستويات بالمواصفات القياسية الخاصة بالحد الأدنى المسموح بتعرض الأجسام لها فإنه تجد الملاحظة إن جميع القيم الباردة أعلاه لا تزيد عن الحد الأدنى المسموح به دولياً. فالقيمة القصوى الخاصة بمنطقة حب الهجدة (جنوب غرب الحرم المكي الشريف)، أقل ببعض المرات من حد التعرض الأدنى لمعايير (ICNIRP) والتي تتراوح ما بين (0.16 - 0.43) ملي أمبير/متر) أي بنسبة 14.81% من الحد الأدنى للأمن تلك المعايير الدولية. إلا أنها تساوي تماماً مع الحد الأدنى الخاص بالمعايير الإيطالية وهو (0.16 ملي أمبير/متر). مما يوضح إقراض تلك المستويات الخاصة بشدة المجال المغناطيسي بمنطقة الدراسة وخاصة بالأحياء الماشية للحرم المكي لبعض المستويات التي تستدعي الحذر والمتابعة الدورية لمعدلاتها.

شكل (10): يوضح الخريطة الكشفية لقيم القياسات الخاصة بمستويات شدة المجال المغناطيسي والتي تم تسجيلها خلال الفترات الصباحية والمسائية لموسم رمضان لسنة ١٤٣٤ هـ.
جدول (2): قيم القياسات القصوى والدنية لشدة المجال المغناطيسي (مللي أمبير/مترًا)، خلال فترات اليوم لموسم رمضان لسنة ١٤٣٤ هـ موزعة على الأحياء ببعض أعداد القراءات والتي سجلت بها.

<table>
<thead>
<tr>
<th>الاسم الجغرافي</th>
<th>رقم الموقع</th>
<th>فترات القياس</th>
<th>أعلى قيمة</th>
<th>أقل قيمة</th>
<th>المتوسط</th>
</tr>
</thead>
<tbody>
<tr>
<td>فترات اليوم</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td></td>
<td>٥.٤١٠</td>
<td>٦.٢٩٨</td>
<td>٦.٠٩٠</td>
<td>٦.٠٠٨</td>
</tr>
<tr>
<td>PM</td>
<td></td>
<td>٥.٣٠٠</td>
<td>٤.٧٤٨</td>
<td>٤.٦٣٠</td>
<td>٤.٦٢٠</td>
</tr>
</tbody>
</table>

شكل (1): مقارنة بين قيم المتوسطات التي تم تسجيلها لشدة المجال المغناطيسي (مللي أمبير/مترًا) بكافة مواقع خلال فترات الصباحية والمساءة من اليوم، لموسم رمضان لسنة ١٤٣٤ هـ.

<table>
<thead>
<tr>
<th>Power Density (S)</th>
<th>٤.١٠٠</th>
</tr>
</thead>
</table>

يعد قياس مستوى كثافة القدرة الموجية (Power Density) تابعًا لقياس القدرة بالأشعة الراديوية (Kathaella Elafa) الصادر عن أبراج ومراكز الجوال من القياسات الابتدائية لكثافة الموجات غير المهمة، كمقياس لمستوى الإشعاع الصارخ عن أبجرات الهواتف الخاصة بالاتصالات اللاسلكية، والتي يمكن من خلالها تقييم وضع السماح والبيئة للموجات المنبعثة وقياس كمية الطاقة التي تصل إلى جسم الإنسان.
تعدّت كثافة القدرة (S) مقياساً لمستوى الإشعاع في حال التعرض له، ويعبر عنها بوحدات الواط للمتر المربع.

الوحدة (W/m²) (W/س). كما أنه في حالة الأمواج المتوقعة، ترتبط كثافة تدفق القدرة وشدة المجال الكهربائي (E) ببعضها بعضاً (بالمعاوقة الملازمة للقضاء الحر) 377 = 0

\[S = E^2 / \eta \]

حيث E (E) بوحدات الفولت/متر، أمبير/متر على التوالي. كما يعبر عن (S) بوحدات واط/متر².

وقد لوحظ بمقارنة قيم المتواترات لمستويات شدة كثافة القدرة الموجية التي تم رصدها على فترات اليوم، زيادة مستوياتها خلال الفترات الصباحية بالمقارنة بما تم تسجيله أثناء فترات ما بعد الظهر والفترات المساءية، كما هو موضح شكل (8). مسجلة ارتفاعاً في مستوياتها يتراوح ما بين 27.3 إلى 58.876 مللي واط/متر² بالأحياء المتاخمة لسلاطات الحرم المكي الشريف (الهجرة)، هي جارة الباب الشامى، حي أوابة وحي شعب عامر وشعب على. في حين انخفضت مستوياتها نسباً بالأحياء البعيدة عن سلاطات الحرم المكي لمسجل (5.5 مللي واط/متر²) بحوالي المسافة (8.897 مللي واط/متر²) بحالي العزيزية، (7.611 مللي واط/متر²) بحالي الخالدية، (6.666 مللي واط/متر²) بحالي العنيبية، شكل (7).

وبذلك يكون أقصى مستوى للأشعة الراديوية قد سجل بحالي الظاهرة في خلال الفترة ما بين العاشرة صباحاً والثانية عشر ظهراً والثلث (16:30) واط/متر² إلا أن هذه القيمة أقل بكثير من المعايير القياسية والمحددة دولياً ومحلياً، فهي تمثل قراءة نسبة المأهولة 2.16% من أدنى مستوى للحد الأدنى لمستوى كثافة الطاقة الكهرومغناطيسية (20.4 واط/متر²) والمجسم يمكن اعتبار الأجسام لها عند نطاقات الترددات الراديوية والتي تبدأ من 3 كيلوهرتز إلى 300 جيجاهرتز وخاصة الصادرة عن لجنة الدولية للتوافق من الإشعاعات غير المؤينة (ICNIRP). إلا أنه يقترب من الحد الأمي لمستويات التعرض للأشعة الكهرومغناطيسية الخاصة بالمعايير الإيطالية.

شكل (7): يوضح الخريطة الكتاتوية لقيم القياسات الخاصة بمستويات شدة كثافة القدرة الموجية والتي تم تسجيلها خلال الفترات الصباحية والمساءية لموسم رمضان لسنة 434 هـ.
جدول (3): قيم القراءات القصوى والدنية لشدة كثافة القدرة الموجهة (ملي واط/متر۲)، خلال فترات اليوم لمراقبة Qualitas لسنة ۴۲۴ هـ موزّعة على الأحياء تبعاً لأعلى القراءات والتي سجلت بها.

شكل (8): مقارنة بين قيم المتوسطات التي تم تسجيلها لشدة كثافة القدرة الموجهة (ملي واط/متر۲) بكافّة المواقع خلال الفترات الصباحية والمسائية من اليوم، لموسم رمضان لسنة ۴۲۴ هـ.

رصد مواقع أبراج شبكات الاتصالات اللاسلكية (Macrocells) الرئيسية

تأتي من حصر ما يقرب من ۲۴ برجًا من الأبراج القاعدية (الماكرو) تحت توشيح ماكرو (Macrocells) (تشمل (۱۵) برجاً ملاكًا لشركة الإتصالات السعودية (STC)، وحالي (۱۶) أبراج تابعين لشركة موبايل). بالإضافة إلى عدد (۳) أبراج تم رصدهم لشركة زين للإتصالات. ومن الملاحظ إنتاج وترويج قطباتها على الأطراف الخارجية للمنطقة وعلى إمتداد الطرق الداخلية أي خارج نطاق الحزام السكن، باستثناء بعض الأبراج الموجودة داخل الأحياء.
السكنية كالمتواصلة على أطراف حي المشاعر والعزية والمسفلة وحى السليمانية. لذلك إهتمتدراسة
بقياس مستويات شدة الموجات الكهرومغناطيسية الصادرة عن تلك الأبراج الرئيسية والواقعة داخل
المناطق لمنطقة الدراسة، وخاصة التي سجلت بعضها مستويات تسترعي الإهتمام من تجاوز بعض النتائج
الصادرة عنها لقيم محددة. لذا وجب التعرف على وضعها البيني الحالي من خلال قياس مستويات المجالات
الكهربائية، والمغناطيسية وكثافة القدرة للطاقة الصادرة عنها وفي محيط المواقع السكنية المتاخمة حول
تلك المحطات، أشكال (٩ - ١٠).

شكل (٩): خرائط كنارية لمستويات شدة كلاً من شدة المجال الكهربائي والمغناطيسية وكثافة القدرة
القصوى والتي تم رصدهم بالمنطقة المحيطة ببرج طريق الملك فيصل وتغير مستويات الشدة
بالمنطقة المحيطة بتغير المسافات حولها.

شكل (١٠): خرائط كنارية لمستويات شدة كلاً من شدة المجال الكهربائي والمغناطيسية وكثافة القدرة
القصوى والتي تم رصدهم بالمنطقة المحيطة ببرج طريق المسجد الحرام، برج الشركة
السعودية للإتصالات (الجهة الشمالية الغربية بطريق جبل الكعبة. وموقع برج شركة زين للإتصالات
بالجهة الشمالية الشرقية بطريق المسجد الحرام.

وقد أوضحت نتائج القياسات بالمناطق المحيطة بالأبراج الرئيسية والواقعة داخل النطاق العمراني بمنطقة
الدراسة، أن مستويات المجالات الكهرومغناطيسية تقل نسبياً في بالأماكن المجاورة لقاعدة الأبراج الرئيسية
 مباشرة، ثم ترتفع نسبياً بشردة يحدد الإبتعد عن قاعدة البرج لأكثر من ٥٠ متر تقريباً وحتى مسافة
٣٠٠ متر تقريباً، ثم تعاود في الإختفاء مرة أخرى كلما بدت المسافة أكثر. ويمكن تفسير ذلك بسبب إتجاهية
نطاق منظومة الهواتف اللاسلكية والتي تجعل الإشعاع الكهرومغناطيس ينقل ببعض طاقته بعيداً عن
قاعدة البرج على هيئة حزم من الأشعة الراديوية، تكون ضيقة في الإتجاه العمودي وعرضية قليلاً في
الاتجاه الأفقي ولها السبب تكون شدة المجالات الإشعاعية قليلة عند سطح الأرض بالمنطقة التي تسر
الهواء مباشرة، شكل (11).

شكل (11): نموج يوضح نمط اتجاه الشعاع الرئيسي الصادرون. شكل (11) بمنحنة وعلى المسافات المتقاربة.

مؤسسة الأنظمة العالمية لإتصالات الجوال، GSM, 2010.

بلا أنه يستثنى من ذلك بعض المواقع نتيجة لتواجد أكثر من برج رئيسي ومنطقة وعلى مسافات متقاربة.

 مثل ذلك موقع برج طريق الملك فيصل بحري الروضة، شكل (12) حيث سجلت مستويات المجالات الكهرومغناطيسية في المنطقة التي تتوسط البرجين وعلى مسافة 80 متر تقريباً والمتواجد عنها تحديداً

موقع (مدرسة الملك خالد الإبتدائية للبنين) بالإضافة إلى العديد من المبانى والمنشآت السكنية، أعلى

مستوياتها لشدة المجالات الكهرومغناطيسية بلغت حوالي (69.0) مللي واط/متر² لكثافة القدرة الموجبة.

وبالرغم من أن تلك القيمة كانت أقل بعشرات المرات من حد تعرض الأمن لمعايير (ICNIRP)

والمعايير السعودية لتمثل فقط 22.0% من الحد الأدنى الأمن لكل المستويات، كذلك أعتبرت أقل من حدود

العرض الأمن للمعايير الإيطالية والتي تبلغ (0.1) واط/مللي متر² أي بنسبة 99.0% من الحد الأدنى لها، إلا أن

تلك القيمة تخطت الحد الأمن والخاص بالمعايير الروسية (0.01) على واط/مللي متر² بأكثر من 39 مرة.

شكل (12): مخطط يوضح موقع مدرسة الملك خالد الإبتدائية للبنين والمبانى السكنية الواقعة ضمن نطاقات المجالات الكهرومغناطيسية المسجلة لبرج الإتصالات الواقعين بحري الروضة بطريق الملك فيصل.
كما أوضحنا في القياسات تأرجح شدة المجالات الكهرومغناطيسية بين الزيادة والنقصان كلاً إزداد بعد عن
قاعدة البرج الرئيسي بمسؤوميات وإتجاهات غير ثابتة نسبيًا وتختلف من موقع برج لآخر. ويمكن أن نزع ذلك
إلى تركيز بعض هوائيات الأبراج لإشعاعها الرئيسي لتغطية منطقة ما دون غيرها، مثل ذلك ما تم رصده
بموقع الأبراج القاعدية المتواجدة بالقرب من ساحات الحرم المكي والتي سجلت زيادة في مستوياتها كلما تم
الإقترب من ساحات الحرم المكي، لذلك لا يمكن إعتماد تلك المسافات بالقرب أو البعيد عن أبراج الجوانب
التي اقرب عند قياس مستويات المجالات الكهرومغناطيسية. لذلك من
أفضل الاعتماد على قياس مستويات المجالات الكهرومغناطيسية
حقيباً بالأماكن ذات الأهمية.

أبراج الجوانب الثانية (Microcells)

تم رصد ما يقارب من 485 موقع لأبراج الجوانب الثانية يحيط
المنطقة المركزية بشكل (13). بعض تلك الهواتف يكون منها
قواعده مدنية على إمتداد الشوارع أو تعتلي أسطح بعض المناطق، كما
يوجد العدد منها معقله على جدران المباني وأعمدة الإشارة. تقوم
هوائيات تلك الأبراج على توفير التغطية الداخلية للأحياء، كما تقوم
بالزيادة من سعة الشبكة في حال وجود كثافة استخدم داخل الأبراج الرئيسية (المكاوية)، في حين تكون
طول هذه الهواتف أقصر من طول هوائيات خليه المكاوية حيث تتراوح أطولها ما بين (18-31) متر تقريباً،
كما أنها تعمل بقدرة منخفضة عن مثيلاتها في أبراج المكاوية لتغطي مسافات قصيرة نسبياً داخل نطاق
المنطقة. لذا فإن المسافات التي تفصل بينها تتراوح بين (100-1000) متر تقريباً.

شكل (13): خريطة توضح مواقع أبراج الجوال المايكرو والتي تم رصدها بنطاق المنطقة المركزية للحرم
المكي الشريف.

تم إجراء القياسات الحالية لمستويات المجالات الكهرومغناطيسية لبعض مواقع الأبراج الثانية، للوقوف
على المسافات الأمنة التي يجب توافرها في محيط تواجد مثل تلك النوعية من الأبراج، بالإضافة إلى كثافة
على إمتداد منطقة الدراسة، جدول (4).

<table>
<thead>
<tr>
<th>المسافة من قاعدة البرج</th>
<th>أسفل</th>
<th>أعلى</th>
</tr>
</thead>
<tbody>
<tr>
<td>ميابرة</td>
<td>0.86</td>
<td>1.34</td>
</tr>
<tr>
<td>متراً</td>
<td>0.86</td>
<td>1.34</td>
</tr>
<tr>
<td>100 متر تقريباً</td>
<td>0.86</td>
<td>1.34</td>
</tr>
<tr>
<td>50 متر تقريباً</td>
<td>0.86</td>
<td>1.34</td>
</tr>
<tr>
<td>20 متر تقريباً</td>
<td>0.86</td>
<td>1.34</td>
</tr>
<tr>
<td>10 متر تقريباً</td>
<td>0.86</td>
<td>1.34</td>
</tr>
<tr>
<td>شدة المجال الكهربائي (فولت/متر)</td>
<td>0.385</td>
<td>0.679</td>
</tr>
<tr>
<td>شدة المجال المغناطسي (مللي أمبير/متر)</td>
<td>0.385</td>
<td>0.679</td>
</tr>
<tr>
<td>كثافة الكهربائي (مللي واط/متر²)</td>
<td>0.385</td>
<td>0.679</td>
</tr>
</tbody>
</table>

جدول (4): يوضح قيم القراءات القصوى لمستويات شدة المجالات الكهرومغناطيسية بالمنطقة المحيطة
لبرج ثانوي يبلغ ارتفاعه حوالي (18) متر تقريباً.

معهد خادم الحرمين الشريفين لأبحاث الحج والعمرة - جامعة أم القرى
السبيل - كي جبل النور. وأخرى بالمنطقة المحيطة بساحتين الحرم المكي الشريف.

وقد أُفضت نتائج القياسات الميدانية لبعض الأبراج الثانوية والتي يتراوح أطوالها ما بين (6 - 18) متر تقريباً، والمثبتة بالأماكن العامة والأسواق وعلى إمتداد الطرقات، أقصى مستوياتها على مسافة (20) متر تقريباً بالنسبة للأبراج التي يصل ارتفاعها حوالي (18) مترًا من سطح الأرض لتسجل (1.81) مليون أتمة/متر. في حين سجلت الأبراج متوسطة الارتفاع (6) متر تقريباً قراءات مرفعة بالمقارنة وعلى مسافات قريبة جداً من موقع البرج أقل من (2) مترًا لتصل أقصى مستوياتها للكثافة القدرة الموجبة إلى حوالي (1.81) مليون أتمة./متر.

وغير أن هذه المستويات لا تتجاوز الـ 39% من الحدود القصوى والمقررة عالمياً إلا أنها تتعلق بعض القواعد على الانتشار الخاص بتلك الأبراج الثانوية متوسطة الارتفاع وخاصة في الأماكن التي يوجد بها الجموه بصفة مستمرة (بما فيها المدارس والمستقبلات والأسواق)، وتجميع الحرم الأمن للأبراج ذات الارتفاعات (18) متر بما لا يقل عن عشرين متر تقريباً. ولا تقل مساحة الحرم الأمن للأبراج ذات الارتفاع (6) متر عن ثمانية أمتار، وهذا يتفق مع ما أوصت به معايير (1992 ANSI/IEEE) المنظمة لل/=التنور للمواقع الراديوية.

كما أمكن حصر عدد الأبراج التي تم رصدها بكثافة الأحياء الواقعة ضمن منطقة الدراسة ومقارنة تلك الأعداد بمساحات كل حي وأقصى قيمة لكثافة القدرة الإشعاعية التي تم تسجيلها بكل حي. وقد لوحظ عدم ارتباط القيم الخاصة بمستويات المجالات الكهرومغناطيسية التي تم رصدها بكل حي بعد الأبراج المتواجدة فيه، فالعديد من الأحياء سجلت قيمةً منخفضة نسبياً بالرغم من إحتوائها على أعداد كبيرة من الأبراج الثانوية. كما في الحالات التالية: حي الأندلس سجل قيمةً منخفضة لمستويات كثافة القدرة الموجبة تبلغ حوالي (1.6) مليون /متر. في حين يوجد به أكثر من 40 برجاً ثانوية لتغطية مساحة (7848) كيلومتر. مربع تقريباً. كذلك حي جبل النور بلغ القيمة الفردية بأقصى مستويات لكثافة القدرة الموجبة تم تسجيلها به حوالي (1.8) مليون /متر. في حين توجد أكثر من 20 برجاً ثانوية به لتغطية مساحة مقاربة نسبياً تبلغ حوالي (864) كيلومتر مربع تقريباً.

من خلال ذلك يمكننا إيضاح أن زيادة زيادة في أعداد تلك الأبراج الثانوية مع الحفاظ على المسافات الأمنة للتعرض حولها، يساهم بقدر كبير في إنخفاض مستويات طاقة المجالات الكهرومغناطيسية بالأحياء الواقعة بها تلك الأبراج. هذا الاعتقاد قد ينافي تماماً مع الرؤى السابقة إلا أن هذا ما أكدته ندوة عووان "شبكات

السجل العلمي لعام ١٤٣٦ هـ - الملتقي العلمي ٣ لأبحاث الحج والعمرة والزيارة ٢٣٤
المحمول وأثرها على البيئة" التي أقيمت مؤخراً بكلية الهندسة بجامعة القاهرة. وأوضحته عدة أبحاث علمية
في هذا المجال بأن زيادة وحدات أبراج الهاتف الجوالة تقلل من نسبة الإشعاع الكهرومغناطيسي المصاحب عن
تلك الأبراج وخاصة بالمجالات التي تزداد بها كثافة المستخدمين، هذا ما أكد أيضاً مع بعضاً مضاعف عضو
بمعهد مهندسي الإلكترونيات والكهرباء في الولايات المتحدة الأمريكية في بحث، مفهضاً خبرته تلك
الأبراج تمكن من زيادة القدرة الموجية للإشعاع الصادر منها لإستيعاب الأف المشتركون وليس في كثافة
انتشارها.

SAR (Specific absorption rate) حساب معدل الإشعاع النوعي (SAR) الموضعي للدماغ البشري، نظراً لما
أثبتته العديد من الدراسات والتجارب الخاصة ببعض أجزاء الجسم أن منطقة الرأس تعتبر الأكثر عرضة
لإختراق تلك المجالات وخاصة التي توضع على مشرفة من العنصر البشري.
(OM P. Gandhi, 1990; Guy and Chow 1986) وذلك باستخدام معادلة معدل الإشعاع النوعي (SAR) (الثانية):

\[SAR = \sigma \left| E^2 \right| / \rho_m = PA / pm \]

حيث يعبر عن الرمز:
\(\sigma \): كثافة القدرة الإشعاعية الممتدة بواسطة نسيج المخ البشري,
\(PA \): شدة المجال الكهربائي داخل النسيج (W/m²) (r.m.s),
\(pm \): الكثافة الكتالية لنسج المخ البشري (Kg/m²)

كذلك تم استعمال القيم الخاصة بكل من معدل التوصيل الكهربائي لنسجي المخ البشري (5) والكثافة
الكتالية لنسج المخ البشري (5) من الجدول (5) لتبردات شبكات الجوال التي تغطى منطقة الدراسة
والمتعددة ما بين (1,800 - 2,500 ميغاهرتز).

جدول (5) : خصائص العزل الكهربائي لنسج السائحة دماغ الإنسان (2011)

<table>
<thead>
<tr>
<th>الكثافة الكتالية لنسج المخ البشري (Kg/m²)</th>
<th>التوصيل الكهربائي لنسج المخ البشري (Ω⁻¹m⁻¹)</th>
<th>مدى التردد (ميجاهرتز)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.23</td>
<td>0.7665</td>
<td>900</td>
</tr>
<tr>
<td>0.63</td>
<td>1.531</td>
<td>1800</td>
</tr>
</tbody>
</table>

ومقارنة النتائج الخاصة بحسابات معدلات الإشعاع النوعي بالمنطقة جدول (6), مع حدود الأمان الموصى
بها دولياً والتي أقرتها اللجنة الدولية المعنية بالحماية من الإشعاع غير المؤلم (ICNIRP), وبالقبول السعودي
الأساسي بشأن معدل الإشعاع النوعي الموضعي بمنطقة الرأس، فإنه تجدر الإشارة إلى جميع النتائج
ال خاصة بحسابات معدلات الإشعاع النوعي بالمنطقة الدراسة لأتسهيل على الحد الأدنى المسموح به والارتداد
في كافة التوصيات الدولية المحلية. فقد سجلت أعلى قيم لمعدل الإشعاع النوعي بحبة الهجدة وبلغت
مقدارها حوالي (1.32 ميجاهرتز) وتمثل هذه القيمة فقط 1.33% من الحدود القصوى المسموح بها لإشعاع منطقة
الرأس للمجالات الكهرومغناطيسية لقيمة كلاً من

معهد خامد الحرين الشريفين لأبحاث الحج والعمرة - جامعة أم القرى
القيود السعودية الخاصة بعرض العموم من الناس بالأماكن المفتوحة. في حين، تمثل نسبة 20% من تلك الحدود القصوى المسموح بها لعرض المهنيين بالمناطق الملاصقة تماما لأبراج الجوالة.

<table>
<thead>
<tr>
<th>الفترات المسائية</th>
<th>الفترات الصباحية</th>
</tr>
</thead>
<tbody>
<tr>
<td>معدل الإتصال النوعي الموصى لمنطقة legalized (م/كم)</td>
<td>الأحياء ذات أقصى قيم</td>
</tr>
<tr>
<td>مدى التردد</td>
<td>مدى التردد</td>
</tr>
<tr>
<td>1800</td>
<td>900</td>
</tr>
<tr>
<td>(ميجاهرتز)</td>
<td>(ميجاهرتز)</td>
</tr>
<tr>
<td>459</td>
<td>277</td>
</tr>
<tr>
<td>415</td>
<td>274</td>
</tr>
<tr>
<td>161</td>
<td>109</td>
</tr>
<tr>
<td>حتي الهجولة</td>
<td>حتي الهجولة</td>
</tr>
</tbody>
</table>

جدول (1) : يوضح نتائج الحسابات الخاصة بمعدلات الإتصال النوعي تبعاً للأحياء التي تم تسجيل أقصى قراءات بها لشدة المجالات الكهرومغناطيسية.

الخاتمة والتوصيات

اعتماداً على النتائج التي تم رصدها بمحيط منطقة الدراسة، فقد أمكن الخروج بعدد من التوصيات، ربما يمكن اعتبارها وإعتمادها في بناء نظام وقائي تتفق مع ما تتعهد معاً بين المنظمات والدراست والإنتاج، وكافة الإجراءات الوقائية التي بنيت على أساس وحيد اللهم الحرام وقاطع تلك البخاخة الشائعة في بيئة أمنة كفيلة بكفاءة المواقف والحروف والتي تسعى المملكة جاهدة في توفيرها في إطار مستقبلها ودورها الفعال في المحافظة على صحة زوار بيت الله الحرام. ويمكن تلخيص هذه التوصيات كالآتي:

- ضرورة تقييم الشركات مقدمة خدمات الهاتف الجوال بالمنطقة المركزية بمعايير ومعايير ومواصفات الصحة العالمية من حيث الكثافة والارتفاع وكمية الإشعاع، والتعاون مع الجهات الرقابية لتقييم خدمات إتصالات جودة عالية ويشمل توظيف مع مواصفات ومعايير الصحة العالمية.
- القيام بالعديد من الدراسات وإجراء العديد من المشاريع والندوات التوعوية لضمان توعية الجمهور بأهمية هذه المحاولات والحد من تجفيفهم وتشكوكهم.

- ضرورة رصد ورصد مستويات شدة المجالات الكهرومغناطيسية بصفة دورية وخاصة بالمناطق المجاورة لساحات الحرم المكي الشريف.
ضرورة منع إقامة منصات لمحمات الأبراج القاعدية (الرئيسية) لشبكات الهاتف الجوال داخل الأحياء والمخططات السكنية، وضرورة مراجعة الموقف البيئي لبريج طريق الملك فيصل بحراً الروضة.

ينبغى على الشركات مقدمة خدمات الهاتف الجوال حسب وصول الطبقات العالية للتزود الصادرة من هواتف الهواتف القاعدية بالقرب من المدارس والمستشفى. وضرورة مراجعة الجهات المستقلة لبعض تجاوزات تلك الشركات من تثبت تلك الأبراج بعدن من المواقع فوق أسطح بناءات بعض المستشفيات والمباني من المدارس.

ضرورة منع تثبيت الهواتف الخاصة بتقنياً شبكات الهاتف الجوال على الجدران الخارجية والواجهات لبعض المنازل وخاصة المتواجدة بالقرب من ساحات الحرم المكي، وضرورة الإلتزام بالقيود والمسافات الأمنة والمقررة دولةً ومحليً برتفاعات صواري تلك الأبراج.

مراجعة الفيدرال الخاصة بالمتفاق الأمنة حول الأبراج الثانوية والمنشورة بالطرقات والمراكز التجارية والأسواق، بحيث يحتوي إقراضها من الجماع لمسافات لا تقل عن عشرين متراً للإطارات البالغ إرتفاعها حوالي (18) متراً، وكذا بمسافة لا تقل عن ثمانية أمتار للإطارات البالغ إرتفاعها حوالي (16) متراً. بحيث تمثل تلك المسافات حرعاً أمناً يقل في نطاقها التواد البشري.

ضرورة إدام شركات الاتصالات بوضع تصاميم جمالية يراعي فيها ملاءمة تلك الأبراج لموقع المنطقة ومكانتها التراثية والروحانية وخاصة بالمناطق القريبة من ساحات الحرم والمشاعر المقدسة. وضرورة الإبتعد عن النمط التقليدي من حيث الشكل نظراً لما يحدث في نفس البعض من تخوف دائم منها.

المراجع

1. الرويس، عبدالمجيد سالم (2001). قياس المجال الكهرومغناطسي بالقرب من محطات قاعدة في خليج
 صغيرة المساحة، مجلة العلوم الهندسية، جامعة الملك سعود، مأل، رقم، المملكة العربية السعودية.
2. صالح الدين محمد عبداللطيف، "الذخيرة العضوية والتهاب الكهرومغناطسي بالميتابي القريب من خطوط
 الجهاد العامي بسبب أسوأ من جمهورية مصر العربية"، مجلة أسوأ للممارسات البيئية، العدد 21 - 2002.

3. المجالات الكهرومغناطيسية والصحة العامة للهواتف الخلوية وأبراج المحطات، نشرة علامة رقم 193،
 منظمة الصحة العالمية، جنيف.
 Monit Assess, Springer Science+Business Media B.V.
9. ICNIRP, 2009. Exposure to high frequency electromagnetic fields, biological effects and health consequences (100 kHz-300 GHz)